DNA damage increases sensitivity to vinca alkaloids and decreases sensitivity to taxanes through p53-dependent repression of microtubule-associated protein 4.

نویسندگان

  • C C Zhang
  • J M Yang
  • J Bash-Babula
  • E White
  • M Murphy
  • A J Levine
  • W N Hait
چکیده

Taxanes and Vinca alkaloids are among the most active classes of drugs in the treatment of cancer. Yet, fewer than 50% of previously untreated patients respond, and clinicians have few ways of predicting who will benefit from treatment and who will not. Mutations in p53 occur in more than half of human malignancies and may alter the sensitivity to a variety of anticancer therapies. We have shown that the transcriptional status of p53 determines the sensitivity to antimicrotubule drugs and that this is mediated through the regulation of microtubule-associated protein 4 (MAP4). Expression of MAP4 is transcriptionally repressed by wild-type p53. Increased expression of MAP4, which occurs when p53 is transcriptionally inactive, increases microtubule polymerization, paclitaxel binding, and sensitivity to paclitaxel, a drug that stabilizes polymerized microtubules. In contrast, overexpression of MAP4 decreases microtubule binding and sensitivity to Vinca alkaloids, which promotes microtubule depolymerization. To determine whether induction of endogenous wild-type p53 by DNA-damaging agents alters the expression of MAP4 and changes the sensitivity to antimicrotubule drugs, we assayed cell lines with wild-type or mutant p53 for the expression of MAP4 and drug sensitivity before and after DNA damage. UV irradiation, bleomycin, and doxorubicin increased wild-type p53 expression and decreased MAP4 expression. These changes were associated with decreased sensitivity to paclitaxel and increased sensitivity to vinblastine. These changes in drug sensitivity were no longer observed when p53 and MAP4 returned to baseline levels. Changes in drug sensitivity following DNA-damaging agents were associated with decreased binding of paclitaxel and increased binding of Vinca alkaloids. In contrast, DNA damage did not alter the sensitivity to non-microtubule-active drugs, such as 1-beta-D-arabinofuranosylcytosine and doxorubicin. Changes in drug sensitivity following DNA-damaging drugs were not observed in cells with mutant p53. These studies demonstrate that induction of wild-type p53 by DNA-damaging agents can affect the sensitivity to antimicrotubule drugs through the regulation of MAP4 expression and may have implications for the design of clinical anticancer therapies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Phase I/pilot study of sequential doxorubicin/vinorelbine: effects on p53 and microtubule-associated protein 4.

PURPOSE Few molecular determinants of sensitivity to cancer chemotherapy exist. In experimental systems, p53 regulates the sensitivity to antimicrotubule drugs through its effect on microtubule-associated protein 4 (MAP4). MAP4 is the major microtubule-associated protein in nonneuronal tissues and promotes microtubule polymerization. We reported that wild-type p53 induction by doxorubicin in C1...

متن کامل

Effect of Stathmin on the Sensitivity to Antimicrotubule Drugs

Stathmin is a p53-regulated protein known to influence microtubule dynamics. Because several chemotherapeutic agents used to treat breast cancer alter the dynamic equilibrium of tubulin polymerization, stathmin may play an important role in determining the sensitivity to these drugs. Therefore, we evaluated the effect of stathmin expression on the action of taxanes and Vinca alkaloids using a p...

متن کامل

Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer.

Stathmin is a p53-regulated protein known to influence microtubule dynamics. Because several chemotherapeutic agents used to treat breast cancer alter the dynamic equilibrium of tubulin polymerization, stathmin may play an important role in determining the sensitivity to these drugs. Therefore, we evaluated the effect of stathmin expression on the action of taxanes and Vinca alkaloids using a p...

متن کامل

TXR1-mediated thrombospondin repression: a novel mechanism of resistance to taxanes?

The usefulness of chemotherapeutic agents for the clinical treatment of cancer relies on their toxic effects on dividing cells. While most anti-cancer drugs directly affect DNA synthesis or integrity, the vinca-alkaloids and taxanes act by disrupting the cellular microtubule network (depicted schematically in Fig. 1; for review, see Zhou and Giannakakou 2005). In addition to providing structura...

متن کامل

Pap1+ confers microtubule damage resistance to mut2a, an extragenic suppressor of the rad26:4A allele in S. pombe.

The DNA structure checkpoint protein Rad26ATRIP is also required for an interphase microtubule damage response. This checkpoint delays spindle pole body separation and entry into mitosis following treatment of cells with microtubule poisons. This checkpoint requires cytoplasmic Rad26ATRIP, which is compromised by the rad26:4A allele that inhibits cytoplasmic accum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 59 15  شماره 

صفحات  -

تاریخ انتشار 1999